ON LOCAL RAIN FADE MODELING AND PREDICTION FOR MM-WAVE SATCOM SYSTEM ENGINEERING

NAPEX XIX, June 1995

Ft. Collins, CO

PAUL FLIKKEMA[†], HENRY HELMKEN[‡], and RUDY HENNING[†]

[†]University of South Florida [‡]Florida Atlantic University

Outline

Satcom systems engineering (brief history)

Potential Improvements

- Refined statistics
- Improved event prediction methods

Example: Event prediction via radiometric data

Open Issues (?)

Satcom Systems Engineering

First generation -

- Link budget analysis
- Rain attenuation statistics
 - Fade margin
 - Outage probability analysis

Second generation -

- Power control and coding
- Dynamic capacity allocation (trunking effect)
- Site diversity

Potential Improvements

Must maximize network operating efficiency

Resources must be used to combat rain fades – combinations of 2nd generation methods

Approaches:

- Refined statistics for optimum efficiency
 - Maximize efficiency by using multiple data classes (priorities)
 - Implies multi-tiered service/cost structure
 - Challenge: deep fades
- Improved prediction methods for adaptivity

Improved Prediction Methods

(e.g., nowcasting)

Adaptive approaches — desired properties:

- Successful in anomalous phenomena (can always have a bad day)
- Responsive to fine structure (short-term fade statistics)
- Site-nonspecific (robust)
- Can use information correlated in space and time, e.g.:
 - IR/visual satellite data
 - Radar data
 - Radiometric data

Attenuation Prediction via Radiometric Data

Approach: Analysis of correlation between fluctuations in sky temperature and attenuation caused by rain

Data reduction/processing software:

- C program for generation of "clean" data from PV1 files:
 - data/status unpacking
 - detection of missing data
 - flexible processing of status data
 - calibration processing
- MATLAB for statistical data processing
- MATLAB/Excel for plotting

Attenuation Prediction via Radiometric Data (cont'd)

Goal: Investigate usefulness of on-site radiometer sky temp measurements for prediction of link attenuation due to rain

Example: Time difference of level crossing — a posteriori event detection analysis (preliminary)

For rain event k, TDLC is

$$\Delta^{(k)}(l_b, l_r) = t_b^{(k)}(l_b) - t_r^{(k)}(l_r)$$

where

 $t_b^{(k)}(l_b) = \text{time beacon attenuation crosses } l_b \text{ dB}$

 $t_r^{(k)}(l_r) = \text{time ARD crosses } l_r \text{ dB}$

Preliminary Results

Data set: 13 days in 1994 (16 events)

Parameters:

- \bullet Rain event designated if both beacon atten. and ARD > 7 dB
- Beacon data filtered using 9-point median filter

TDLC computed for *known* events => includes times only for correctly detected rain events.

Sample mean:

$$\bar{\Delta}(l_b, l_r) = \frac{1}{N} \sum_{k=1}^{N} \Delta^{(k)}(l_b, l_r)$$

$$\bar{\Delta}(5,5) = 7.2 \text{ sec}$$

Summary

Complete solutions will require integration of techniques

Fading unavoidable => Mapping of outage statistics to service structure

Deep fading => Prediction using temporally/spatially correlated data

-> What is Needed?